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Abstract 47 

Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with 48 

coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from 49 

hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and 50 

healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 51 

RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when 52 

neutralizing antibody response was low. RNAemia was associated with higher 28-day ICU 53 

mortality (hazard ratio [HR], 1.84 [95% CI, 1.22–2.77] adjusted for age and sex). In 54 

longitudinal comparisons, COVID-19 ICU patients had a distinct proteomic trajectory 55 

associated with RNAemia and mortality. Among COVID-19-enriched proteins, galectin-3 56 

binding protein (LGALS3BP) and proteins of the complement system were identified as 57 

interaction partners of SARS-CoV-2 spike glycoprotein. Finally, machine learning identified 58 

‘Age, RNAemia’ and ‘Age, pentraxin-3 (PTX3)’ as the best binary signatures associated with 59 

28-day ICU mortality. 60 

 61 
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Introduction 64 

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome 65 

coronavirus 2 (SARS-CoV-2; a single-stranded RNA virus) poses an unprecedented challenge 66 

to health care systems globally. It is increasingly apparent that conventional prognostic scores 67 

for critically ill patients admitted to intensive care units (ICUs) such as the APACHE II (Acute 68 

Physiology and Chronic Health Evaluation) score1 and SOFA (Sequential Organ Failure 69 

Assessment) score2, are not discriminatory in COVID-19 ICU patients3–6.  70 

In this context, circulating SARS-CoV-2 RNA (RNAemia) has been highlighted as a 71 

promising prognostic biomarker in hospitalized COVID-19 patients, as it is associated with 72 

disease severity7 and mortality8–10, with an estimated prevalence of 10% (95% CI 5-18%, 73 

random effects model)7. Further, we hypothesized that the acute and profound alterations in 74 

the innate and adaptive immune system in COVID-19 patients3,11–13, especially in RNAemic 75 

patients14–18, will be accompanied by marked changes in the circulating proteome and 76 

interactome and that the proteome in COVID-19 patients will highlight mechanistically 77 

relevant signatures and trajectories, when compared to non-COVID-19 sepsis and healthy 78 

controls. Thus far, proteomics studies have focused on the determination of protein biomarkers 79 

of COVID-19 severity19–22, but have not assessed the longitudinal relationship between 80 

proteomic changes, RNAemia and 28-day mortality.  81 

In this study, we assessed RNAemia, antibody response against SARS-CoV-2 and 82 

proteomic profiles in serial blood samples from COVID-19 patients admitted to two ICUs. 83 

Controls included hospitalized, non-ICU COVID-19 patients as well as SARS-CoV-2-negative 84 

ICU sepsis and non-ICU patients. In the context of RNAemia, we explored the plasma protein 85 

interactions with the SARS-CoV-2 spike glycoprotein. Finally, we compared the associations 86 

of RNAemia and protein biomarkers with 28-day mortality, including established biomarkers 87 
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of acute respiratory distress syndrome (ARDS), i.e. receptor for advanced glycation end-88 

products (RAGE)23–25, and prognosis in ICU patients with sepsis, i.e. pentraxin-3 (PTX3)26–29.  89 

 90 

Results 91 

Demographics and clinical characteristics of COVID-19 patients. 474 blood samples were 92 

available for analysis (Fig. 1, Supplementary Fig. 1): 295 longitudinal samples from ICU 93 

patients with COVID-19 admitted to two university hospitals (GSTT; n = 62 and KCH; n = 16) 94 

and samples from hospitalized, non-ICU COVID-19 patients for comparison (n = 45); ICU and 95 

non-ICU patients without COVID-19 served as controls (n = 55). The baseline clinical 96 

characteristics of all COVID-19 ICU patients are shown in Supplementary Table 1. The 97 

primary outcome measure was defined as mortality 28 days after ICU admission. As 98 

expected30, non-survivors (23%) were older than survivors (P = 0.0004). COVID-19 patients 99 

admitted to ICU were predominantly males (72%). All other characteristics, including common 100 

comorbidities, the time from symptom onset to ICU admission, APACHE II score and SOFA 101 

score, were similar between ICU survivors and non-survivors. The mortality rate in COVID-102 

19 ICU patients was twice as high as in hospitalized, non-ICU COVID-19 patients (23% versus 103 

11%; Supplementary Table 2). 104 

 105 

Frequency of SARS-CoV-2 RNAemia and association with mortality in COVID-19 ICU 106 

patients. The presence of circulating viral RNA was analyzed by RT-qPCR. Serum (GSTT; n 107 

= 62) and plasma (KCH; n = 16) samples were collected within 24 hours of admission to ICU 108 

with COVID-19 and thereafter during week 1, week 2 and again before discharge. Since all 78 109 

COVID-19 ICU patients were administered heparin and heparin has an inhibitory effect on 110 

qPCR31,32, RNA samples were treated with heparinase as previously described33. 18 of 78 111 

(23%) COVID-19 ICU patients had detectable RNAemia within the first six days upon 112 
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admission to ICU (Supplementary Table 1). Strikingly, RNAemia within six days of admission 113 

to ICU was detectable in 56% of non-survivors but only in 13% of survivors (P = 0.0006, 114 

Supplementary Table 1). RNAemia was associated with a higher risk of 28-day mortality 115 

(hazard ratio [HR], 2.05 [95% CI, 1.38–3.04]), that was comparable to age (2.89 [1.66-5.03], 116 

Fig. 2a) and maintained after correction for age and sex (HR, 1.84 [95% CI, 1.22–2.77], Fig. 117 

2b). In comparison, only 2 out of 45 (4%) non-ICU COVID-19 patients tested positive for 118 

RNAemia upon hospitalization (Supplementary Table 2). General demographics and baseline 119 

clinical characteristics of COVID-19 patients with and without RNAemia in the first six days 120 

of admission to ICU are presented in Supplementary Table 3. Hypertension (r = 0.33, P = 121 

0.003), type 2 diabetes (r = 0.24, P = 0.038), bilirubin (r = 0.32, P = 0.005), respiration rate (r 122 

= 0.27, P = 0.018) and elevated potassium levels (r = 0.26, P = 0.023) were positively 123 

correlated to RNAemia, whilst monocyte counts were inversely correlated (r = -0.23, P = 124 

0.047, Fig. 2c). A hierarchical clustering analysis of all clinical variables and RNAemia is 125 

presented in Supplementary Fig. 2. To confirm the specificity of our RT-qPCR assay, we 126 

measured SARS-CoV-2 RNAemia in 134 plasma samples from 55 non-COVID-19 patients, 127 

all of which tested negative (Supplementary Table 4 and 5). 128 

 129 

Humoral immune response during SARS-CoV-2 RNAemia. In both COVID-19 ICU patient 130 

cohorts, IgG antibodies to the SARS-CoV-2 spike S1 glycoprotein and SARS-CoV-2 131 

neutralizing capacity were measured by ELISA and Surrogate Virus Neutralization Test, 132 

respectively. The latter test evaluates the inhibition of binding of the receptor-binding domain 133 

(RBD) of SARS-CoV-2 spike to ACE2. For validation, neutralization potency was correlated 134 

to a HIV-1 based pseudotype neutralization assay in a subset of samples (38 samples from 16 135 

ICU patients, r = 0.81, P <0.0001). COVID-19 ICU patients who tested positive or negative 136 

for RNAemia within the first six days in ICU showed no difference in their strong IgG response 137 
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to SARS-CoV-2 S1 or in their neutralization capacity (Fig. 2d). However, when individual 138 

samples were compared, RNAemia positive samples had lower anti-SARS-CoV-2 spike IgG 139 

levels and lower SARS-CoV-2 neutralization capacity (Fig. 2e).  140 

 141 

Plasma proteome alterations in COVID-19 ICU patients. To capture the host response of 142 

COVID-19 ICU patients, we interrogated their plasma proteome. Baseline plasma samples 143 

from COVID-19 ICU patients (KCH cohort, n = 12) were compared to COVID-19 negative 144 

sepsis ICU patients (sepsis, n = 12) and patients prior to undergoing elective cardiac surgery 145 

(controls, n = 30) (Supplementary Table 4 and 5). The plasma proteome was quantified by a 146 

data-independent acquisition-mass spectrometry (DIA-MS) approach, using authentic heavy 147 

peptide standards representing 500 proteins34, revealing 100 significantly altered proteins 148 

across the three patient groups (q<0.05) (Fig. 3a). Hierarchical cluster analysis highlighted a 149 

cluster of 47 plasma proteins enriched in COVID-19, including members of the complement 150 

cascade, as well as proteins involved in platelet degranulation, the acute phase response and 151 

coagulation (Fig. 3a, b).  152 

Of the 100 circulating proteins altered across control, sepsis ICU and COVID-19 ICU 153 

patients, 29 overlapped with previous proteomic reports identifying markers of COVID-19 154 

severity19,20 (Supplementary Fig. 3). However, only few were associated with 28-day mortality, 155 

as determined through DIA-MS analysis of baseline serum samples obtained from a larger 156 

COVID-19 ICU patient cohort (GSTT, n = 62) (Fig. 3c). Complement factor B (CFB), 157 

carboxypeptidase N (CPN1) and alpha-1-antichymotrypsin (SERPINA3) were all negatively 158 

associated with outcome. An independent, publicly available dataset utilizing proximity-159 

extension assays (Olink, n = 264 survivors, n = 42 non-survivors, Supplementary Table 6) also 160 

confirmed the lack of outcome association for three proteins identified as markers of COVID-161 
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19 severity in previous proteomics studies19,20: lipopolysaccharide binding protein (LBP), 162 

CD14, and inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) (Fig. 3c).  163 

Protein changes that emerged as significantly associated with mortality in ICU patients 164 

but have not been previously linked to the severity of COVID-19, included an elevation of 165 

mannose binding lectin 2 (MBL2) and reductions in protein C (PROC), plasminogen (PLG) 166 

and coagulation factor 7 (F7) (Fig. 3d). The associations of PROC and F7 with 28 days 167 

mortality and the directionality of these associations were validated in the external validation 168 

cohort mentioned above (Supplementary Table 6).  169 

 170 

Protein associations with SARS-CoV-2 RNAemia and clinical improvement. Nine proteins 171 

were significantly associated with RNAemia at baseline (GSTT COVID-19 ICU cohort) which 172 

included an increase in plasma protease C1 inhibitor (SERPING1) and complement C4-A 173 

(C4A); paralleled by a reduction in VE-cadherin (CDH5) and complement factor H-related 174 

protein 1 (CFHR1) (Fig. 4a). In longitudinal serum samples from the GSTT cohort (baseline, 175 

week 1 and week 2; n = 47), a greater increase of polymeric immunoglobulin receptor (PIGR) 176 

was observed in RNAemia positive, compared to RNAemia negative ICU patients (Fig. 4b). 177 

In contrast, kallikrein (KLKB1) levels significantly increased over time but tended to be higher 178 

in RNAemia negative ICU patients (Fig. 4b).  179 

Hierarchical cluster analysis upon significantly changing serum proteins over the two-180 

week period (baseline, week 1 and week 2) revealed four distinct protein clusters (Fig. 4c), 181 

which were annotated by gene ontology enrichment analysis. Alterations in PIGR correlated 182 

closely with neutrophil degranulation proteins such as S100A8 and S100A9 (Fig. 4c, Cluster 183 

2), while KLKB1 kinetics followed members of the coagulation system (Fig. 4c, Cluster 4). A 184 

comparison of the trajectories of individual proteins between patients who survived and died 185 

is shown in Supplementary Fig. 4. The most pronounced changes were observed among 186 
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proteins constituting cluster 4, with recovery of liver-derived proteins linked to lipid 187 

metabolism and coagulation being significantly suppressed in patients who died (Fig. 4c).  188 

 189 

LGALS3BP is enriched in COVID-19 and binds to SARS-CoV-2 spike glycoprotein. The 190 

spike glycoprotein is the largest protein in the viral envelope, responsible for cell entry and is 191 

the main target of neutralizing antibodies35. A magnetic affinity pull-down of a His-tagged 192 

SARS-CoV-2 spike glycoprotein mixed with plasma from COVID-19 ICU patients was 193 

coupled with proteomics to determine interaction partners. Proteomic analysis identified 32 194 

spike-binding proteins. A large proportion were immunoglobulins (Fig. 5a) and members of 195 

the complement system, which are known to directly interact with antigen-bound antibodies 196 

(i.e. C1 complement complex, Fig. 5b, Supplementary Table 7). Additional interaction partners 197 

included complement component 4 binding proteins alpha and beta (C4BPA and C4BPB), 198 

CPN1 (among the proteins associated with 28-day mortality) and galectin-3-binding protein 199 

(LGALS3BP). Apart from apolipoprotein D (APOD), LGALS3BP was the only protein to be 200 

retrieved to a greater extent with spike glycoprotein from plasma of COVID-19 ICU patients 201 

compared to pre-pandemic sepsis ICU patients (Fig. 5c, Supplementary Table 8).  202 

LGALS3BP was markedly elevated in COVID-19 patients as discovered by DIA-MS 203 

and confirmed by ELISA, but unchanged between control and sepsis patients without COVID-204 

19 (Fig. 5d). Strikingly, LGALS3BP was among the most elevated proteins when compared to 205 

sepsis ICU patients (Fig. 5e). Of the proteins revealed to bind spike, only LGALS3BP and 206 

members of the complement cascade were also specifically elevated in COVID-19 ICU 207 

patients. LGALS3BP revealed a strong positive correlation with members of the complement 208 

cascade (C6, C9, C4BPA and C4BPB) and CPN1, but a negative correlation with adiponectin 209 

(ADIPOQ) (Fig. 5f). LGALS3BP abundance in COVID-19 patients closely correlated with 210 
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regulators of the complement cascade, platelet degranulation and the innate immune system 211 

(Fig. 5f, Supplementary Fig. 5).  212 

 213 

SARS-CoV-2 mortality prediction using machine learning. RAGE is an established 214 

biomarker of ARDS23–25, but remained unaffected by SARS-CoV-2 RNAemia and mortality 215 

(Supplementary Fig. 6a). PTX3, however, a protein we and others have previously highlighted 216 

as a prognostic marker in ICU patients with sepsis26–29, positively associated with COVID-19 217 

mortality (Supplementary Fig. 6b). Notably, PTX3 emerged as one of the best predictors for 218 

mortality among 1,526 proteins measured in the external validation cohort of hospitalized 219 

COVID-19 patients described above (n = 264 survivors; n = 42 non-survivors), outperforming 220 

all measured cytokines and chemokines (Supplementary Table 6). Thus, a machine learning-221 

based approach was adopted to determine the best binary combination of clinical variables, 222 

RNAemia and protein biomarkers that are independently associated with 28-day COVID-19 223 

mortality. Kaplan Meier plots highlight RNAemia (P <0.0001) as the best individual predictor 224 

(Fig. 6a-c, Supplementary Table 9), while the binary combinations ‘Age, RNAemia’ (P 225 

<0.0001) and ‘Age, PTX3’ (P <0.0001), improved sensitivity compared to single markers, and 226 

provided better survival stratification (Fig. 6d-f, Supplementary Table 9). 227 

 228 

Discussion 229 

To the best of our knowledge, this is the largest longitudinal assessment of RNAemia, 230 

humoral immune response against SARS-CoV-2, protein biomarkers and clinical variables in 231 

COVID-19 ICU patients to date. SARS-CoV-2 RNAemia was observed in 23% of COVID-19 232 

ICU patients within the first six days of admission to ICU, which is more frequent than its 233 

estimated prevalence (10% [95% CI 5-18%], random effects model)7. Likely explanations 234 

include the fact that RNAemia is expected to be more common in ICU patients due to disease 235 
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severity7. Second, we optimized detection by treating isolated RNA with heparinase33 to 236 

overcome the known inhibitory effect of heparin on qPCR31,32. We also performed a two-step 237 

RT-qPCR protocol rather than the one-step RT-qPCR protocol used in clinical practice and 238 

previous studies in which RNAemia has been assessed thus far. Third, RNAemia was more 239 

frequent closer to the onset of symptoms7 and when humoral response against SARS-CoV-2 240 

was low. The latter observation was maintained after correcting for time since onset of 241 

symptoms. Thus, this is not a mere reflection of low humoral response in early sampling points.  242 

RNAemia within six days of ICU admission was strongly associated with 28-day 243 

mortality, which is a well-defined clinical outcome measure36 also suitable for COVID-19 ICU 244 

patients5. Thus far, studies on RNAemia included predominantly non-ICU patients and 245 

associated RNAemia with disease severity7. Few studies also reported on the ability of 246 

RNAemia to predict mortality8–10 but none of these studies specifically focused on ICU patients 247 

in which RNAemia is likely to be most informative. In our study, RNAemia was more frequent 248 

in ICU patients with type 2 diabetes and hypertension, two well-known risk factors for poor 249 

outcome in COVID-19. Using droplet digital PCR15, RNAemia might become even more 250 

frequent but the clinical relevance of very low levels of RNAemia is unclear. In comparison to 251 

RNAemia as assessed in our study (HR, 1.84 [95% CI, 1.22–2.77] adjusted for age and sex), 252 

the mortality risk conferred by increased nasopharyngeal SARS-CoV-2 RNA abundance was 253 

found to be small (HR, 1.07 [95% CI, 1.03–1.11], n = 1,145)37.  254 

RNAemia could be a consequence of severe disease or might contribute to poor 255 

outcome. Given that the SARS-CoV-2 entry receptor ACE2 is expressed on vascular cells, 256 

including endothelial cells, smooth muscle cells and pericytes of most organs38,39, and SARS-257 

CoV-2 RNA was detected in lungs, pharynx, heart, liver, brain and kidneys of autopsy tissue40, 258 

RNAemia could reflect the extent of viral dissemination. Notably, serum levels of CDH5, an 259 

endothelial specific surface protein, differed between RNAemia positive versus negative ICU 260 
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patients. RNAemia was also inversely associated with monocyte counts. A decrease in 261 

monocyte counts in COVID-19 patients has been attributed to extravasation and recruitment to 262 

lungs11,41.  263 

Strikingly, patients with RNAemia showed dysregulation in several components of the 264 

complement, the coagulation and the kinin-kallikrein system. Viral envelope glycoproteins are 265 

an important trigger of the contact activation system42 leading to a combined activation of these 266 

pathways, a hallmark of thromboinflammation42. SARS-CoV spike is a ligand of MBL243,44 - 267 

a pattern recognition molecule that initiates the lectin complement pathway45. Additionally, 268 

high levels of MBL2 are known to increase lectin pathway-mediated tissue damage46,47. This 269 

is consistent with our observation of a higher risk of mortality in COVID-19 ICU patients with 270 

elevated MBL2 levels. Systemic complement activation has been associated with respiratory 271 

failure in hospitalized COVID-19 patients48 and complement deficiencies have been reported 272 

to have protective effects on COVID-19-associated morbidity and mortality49. Besides 273 

KLKB1, PIGR showed a different trajectory in RNAemia positive ICU patients. PIGR is a 274 

receptor that transports polymeric IgA and IgM from the basolateral to the apical surface of 275 

airway and gut mucosal cells50. Apart from its protective role, PIGR can be used by pathogens 276 

such as Streptococcus pneumoniae to facilitate infection of airway epithelial cells51 and its 277 

plasma and lung tissue levels have been associated with severity of idiopathic pulmonary 278 

fibrosis52, and cystic fibrosis53, respectively. 279 

Pull-down experiments using SARS-CoV-2 spike glycoprotein returned several 280 

members of the complement system. The complement system recruits neutrophils (C3a and 281 

C5a54), is essential for neutrophil extracellular trap (NET) formation (C355 and C3aR56), and 282 

can trigger NET formation (C5a57) when neutrophils are primed by interferon alpha or 283 

gamma57 – cytokines that we previously found elevated in severe COVID-19 patients11. 284 

Furthermore, binding of C1q to NETs protects NETs from degradation by DNases in the 285 
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circulation58.   NETosis was previously shown to be promoted by SARS-CoV-2 RNAemia but 286 

the mechanism remained elusive16. NET formation is also a prothrombotic process59, and 287 

thrombotic complications are highly prevalent in severe COVID-1960. NET formation itself is 288 

part of a positive feedback loop, leading to activation of the alternative pathway of 289 

complement61, the contact activation system62, kinin-kallikrein system62 and release of 290 

neutrophil-derived proteins, including the humoral pattern recognition receptor PTX363. PTX3 291 

is important for activation (through MBL2 and C1q)64 and regulation (through CFH and 292 

C4BPB)65,66 of the complement system67. It is noteworthy that PTX3 has been validated as one 293 

of the best predictors for mortality in an independent cohort of hospitalized COVID-9 patients 294 

covering 1,526 plasma proteins (Supplementary Table 6, https://www.olink.com/mgh-covid-295 

study/). 296 

Besides members of the complement system, we demonstrate that LGALS3BP is a 297 

novel putative binding partner of SARS-CoV-2 spike glycoprotein. LGALS3BP is prominently 298 

expressed in the lung68 and possesses antiviral activity69. The rise in circulating LGALS3BP is 299 

not observed in non-COVID-19 sepsis ICU patients, highlighting the specificity for viral over 300 

bacterial infections. LGALS3BP directly interacts with adeno-associated viruses, inducing 301 

viral particle aggregation and an impairment of transduction70. Similarly, LGALS3BP reduces 302 

the infectivity of human immunodeficiency virus particles71. It is currently unknown if 303 

LGALS3BP-spike binding also affects the infectivity of SARS-CoV-2, i.e. by competing with 304 

binding to ACE2 or preventing the subsequent spike cleavage, which is essential for viral 305 

entry72. Additionally, the direct interaction between LGALS3BP and SARS-CoV-2 spike 306 

remains to be confirmed. Pull-down assays cannot rule out indirect binding to the bait protein.  307 

In summary, RNAemia is frequent in COVID-19 ICU patients and associated with a 308 

higher risk of mortality. To our knowledge, SARS-CoV-2 RNA is the only disease-specific 309 

biomarker that has been associated with COVID-19 severity and mortality to date. Patients 310 
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with RNAemia may benefit from personalized treatment options. Finally, proteomic analyses 311 

of blood samples from ICU patients with COVID-19 uncovered protein trajectories that 312 

associated with RNAemia status, predicted 28-day mortality and identified LGALS3BP as a 313 

novel interaction partner of the SARS-CoV-2 spike glycoprotein. Further studies are required 314 

to assess the role of complement activation in COVID-19 on outcomes and explore the effect 315 

of LGALS3BP on the infectivity of SARS-CoV-2. 316 

  317 
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Methods 517 
 518 
Study design and recruitment. An overview of the study design is presented in 519 

Supplementary Fig. 1. COVID-19 cohorts. COVID-19-positive patients, as confirmed by RT-520 

qPCR of nasopharyngeal samples, who were admitted to the ICUs of Guy's and St Thomas' 521 

NHS Foundation Trust (GSTT) and King’s College Hospital (KCH) between March 12, 2020 522 

and July 1, 2020, were recruited for an observational cohort study with serial blood sampling 523 

and analysis of clinical outcomes. The primary outcome measure was defined as mortality 28 524 

days after ICU admission. Serial blood sampling was performed within 24 hours of admission 525 

to ICU and thereafter three measurements were taken during week 1, week 2 and again before 526 

discharge. In addition, we obtained plasma samples from COVID-19 patients upon 527 

hospitalization at GSTT (non-ICU COVID-19 cohort). Non-COVID-19 comparator cohorts. 528 

Plasma was collected from patients enrolled at the same time in the same KCH ICU as our 529 

COVID-19 ICU cohort but who repeatedly tested negative for nasopharyngeal SARS-CoV-2 530 

(intra-pandemic, non-COVID-19 ICU cohort). Serial blood sampling of these samples was 531 

performed identical to our COVID-19 cohort. Additionally, pre-pandemic plasma samples 532 

from patients recruited at GSTT prior to the COVID-19 pandemic were available as controls. 533 

This included serial plasma samples from sepsis ICU patients (pre-pandemic, non-COVID-19 534 

ICU sepsis cohort), collected upon admission and at three timepoints thereafter; as well as 535 

plasma samples from patients before elective cardiac surgery (pre-pandemic, non-COVID-19 536 

control cohort). The study was approved by an institutional review board (REC19/NW/0750 537 

for all patients recruited at KCH; REC19/SC/0187 for patients recruited at GSTT of the 538 

COVID-19 ICU cohort, the pre-pandemic sepsis ICU cohort, the pre-pandemic control cohort; 539 

REC19/SC/0232 for patients recruited at GSTT of the non-ICU COVID-19 cohort). Written 540 

informed consent was obtained directly from patients (if mentally competent), or from the next 541 
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of kin or professional consultee. The consent procedure was then completed with retrospective 542 

consent if the patient regained capacity. 543 

 544 

Inactivation of serum and plasma. Plasma was collected in EDTA BD VacutainerTM tubes 545 

(BD, 362799), whereas serum was collected in silica BD VacutainerTM tubes (BD, 367820) 546 

and left to clot for 15 min. Plasma and serum tubes were then centrifuged at 2,000 x g for 15 547 

min. Infectious samples were then transferred to a containment level 3 facility for safe 548 

inactivation. Samples destined for RNA extraction were inactivated by addition of 100 µL of 549 

serum or plasma to 500 µL QIAzol (Qiagen, 79306), followed by 40 s of vortexing and 5 min 550 

incubation at room temperature. Samples destined for protein analysis were inactivated by 551 

addition of 1% (v/v) Triton X-100 (Sigma, T8787) and 1% (v/v) tributyl phosphate (Sigma, 552 

00675), followed by 15 s of vortexing and 4 h incubation at room temperature. All samples 553 

were then frozen at -80°C until further processing. 554 

 555 

RNA extraction and heparinase treatment. Total RNA was extracted using the miRNeasy 556 

Mini kit (Qiagen, 217004) according to the manufacturer’s recommendations. Total RNA was 557 

eluted in 30 µL of nuclease-free H2O by centrifugation at 8,500 x g for 1 min at 4°C. To 558 

overcome the confounding effect of heparin on qPCR31,32, RNA was treated with heparinase 559 

as described previously33. Briefly, 8 µL of RNA was added to 2 µL of heparinase 1 from 560 

Flavobacterium (Sigma, H2519), 0.4 µL RNase inhibitor (Ribo Lock 40U/µL, ThermoFisher, 561 

EO0381) and 5.6 µL of heparinase buffer (pH 7.5) and incubated at 25°C for 3 h.  562 

 563 

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). For detection 564 

of SARS-CoV-2 RNA we performed a two-step RT-qPCR using the LunaScript® RT 565 

SuperMix Kit (NEB, E3010) and the Luna Universal Probe qPCR Master Mix (NEB, M3004) 566 
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according to the manufacturer’s recommendations, apart from reducing the total qPCR reaction 567 

volume to 5 µL and loading a cDNA dilution of 1:4 instead of 1:8 when performing the qPCR 568 

reaction. Primer/probe sequences targeting the SARS-CoV-2 nucleocapsid (N) gene (N1 and 569 

N2) were predesigned by Integrated DNA Technologies (IDT, 10006821, 10006822, 570 

10006823, 10006824, 10006825, 10006826) according to the protocol for the detection of 571 

SARS-CoV-2 of the United States Centers for Disease Control and Prevention (US CDC), 572 

using 5’ FAM / ZEN™ / 3’ Iowa Black™ FQ probes. The qPCR reaction concentration for 573 

probe (125 nM), forward (500 nM) and reverse primers (500 nM) were used according to the 574 

US CDC protocol. A plasmid positive control (2019-nCoV_N Positive Control plasmid, IDT, 575 

10006625) was measured on each qPCR plate. Reactions were loaded using a Bravo 576 

Automated Liquid Handling Platform (Agilent). qPCR was performed on a ViiA7 Real-Time 577 

PCR System (Applied Biosystems). Samples were considered positive for SARS-CoV-2 if the 578 

cycle quantification (Cq) value of either N1 or N2 was below 40. Abundance of SARS-CoV-2 579 

RNA in patients who tested positive had a mean Cq of 34.4; range: 29.8-37.6. As reported 580 

before73, N1 primers returned lower Cq values (higher abundance) than N2 primers 581 

(Supplementary Fig. 7).  582 

 583 

Measurement of anti-SARS-CoV-2 antibodies. IgG antibodies against the SARS-CoV-2 584 

spike S1 domain were measured by ELISA (Anti-SARS-CoV-2 IgG ELISA, Euroimmun, EI 585 

2606-9601 G) according to the manufacturer’s recommendations. Since no international 586 

reference serum for anti-SARS-CoV-2 antibodies exists, calibration was performed in ratios, 587 

giving relative antibody quantification. Neutralizing antibodies against SARS-CoV-2 were 588 

measured using a Surrogate Virus Neutralization Test (SARS-CoV-2 sVNT Kit, GenScript, 589 

L00847) according to the manufacturer’s recommendations. This ELISA-based kit detects 590 

antibodies that are able to block the interaction between the SARS-CoV-2 spike receptor 591 
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binding domain (RBD) and the angiotensin converting enzyme (ACE2) cell receptor. For 592 

validation of sVNT measurements in a subset of samples, neutralization potency was measured 593 

using HIV-1 (human immunodeficiency virus-1) based virus particles, pseudotyped with 594 

SARS-CoV-2 spike protein in a HeLA cell line stably expressing the ACE2 receptor, as 595 

described previously13.  596 

 597 

In-solution protein digestion. 10 µL of inactivated serum or plasma were denatured by the 598 

addition of urea (final concentration 7.2 M) and reduced using dithiothreitol (final 599 

concentration 5 mM) for 1 h at 37 °C and 180 rpm. Reduced proteins were cooled down to 600 

room temperature before being alkylated in the dark for 1 h using iodoacetamide (final 601 

concentration 25 mM). An aliquot equivalent to 40 µg of alkylated protein was added to a 602 

0.1 M triethylammonium bicarbonate solution (pH 8.2) and digested for 18 h at 37 °C, at 603 

180 rpm using 1.6 µg of Trypsin/LysC (Promega, V5072). Digested peptide solutions were 604 

acidified using trifluoroacetic acid (TFA, final concentration 1 %).  605 

 606 

Peptide clean-up and stable isotope-labelled standard (SIS) spike-in. Peptide clean-up was 607 

achieved using a Bravo AssayMAP Liquid Handling Platform (Agilent). After conditioning 608 

and equilibration of the resin, acidified peptide solutions were loaded onto AssayMAP C18 609 

Cartridges (Agilent, 5190-6532), washed using 1 % acetonitrile (ACN), 0.1 % TFA (aq) and 610 

eluted using 70 % ACN, 0.1 % TFA (aq). Eluted peptides were vacuum centrifuged (Thermo 611 

Scientific, Savant SPD131DDA) to dry and resuspended in 40 µL of 2 % ACN, 0.05 % TFA 612 

(aq). For clinical cohort analysis, 6 µL of cleaned peptide solution was added to two injection 613 

equivalents of PQ500 SIS mix (Biognosys) using a Bravo Liquid Handling Platform (Agilent).  614 

 615 
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Data-independent acquisition-mass spectrometry (DIA-MS) analysis. Peptides were 616 

analyzed using a high-performance liquid chromatography (HPLC)-MS assembly consisting 617 

of an UltiMate 3000 HPLC system (Thermo Scientific) which was equipped with a capillary 618 

flow selector and coupled via an EASY-Spray NG Source (Thermo Scientific) to an Orbitrap 619 

Fusion Lumos Tribrid mass spectrometer (Thermo Scientific). To generate DIA data for serum 620 

samples (GSTT COVID-19 ICU cohort) and plasma samples (KCH COVID-19 ICU cohort, 621 

the pre-pandemic sepsis ICU cohort and the pre-pandemic control patients before elective 622 

cardiac surgery), peptides were injected onto a C18 trap cartridge (Thermo Scientific, 160454) 623 

at a flow rate of 25 µL / min for 1 min, using 0.1% formic acid (FA, aq). The initial capillary 624 

flow rate was reduced from 3 to 1.2 µL / min in 1 min at 1% B. Peptides were then eluted from 625 

the trap cartridge and separated on an analytical column (Thermo Scientific, ES806A, at 50 626 

°C) using the following gradient: 1–11 min, 1–5% B; 11–32 min, 5–18% B; 32–52 min, 18–627 

40% B; 52–52.1 min, 40–99% B; 52.1–58 min, 99% B. The flow rate was increased to 628 

3 µL/min and the column was washed using the following gradient: 58–58.1 min, 99–1% B; 629 

58.1–59.9 min, 1–99% B; 59.9–60 min, 99–1% B. Finally, the column was equilibrated at 1% 630 

B for 6 min. In all HPLC-DIA-MS analyses, mobile phase A was 0.1% FA (aq) and mobile 631 

phase B was 80% ACN, 0.1% FA (aq). Precursor MS1 spectra were acquired using Orbitrap 632 

detection (resolution 60000 at 200 m/z, scan range 329–1201 m/z). Quadrupole isolation was 633 

used to sequentially scan 30 precursor m/z windows of variable width (Supplementary Table 634 

10). Per isolation window, semi-targeted Orbitrap MS2 spectra (resolution 30000 at 200 m/z) 635 

were collected following higher-energy C-trap dissociation. 636 

 637 

MS database search for DIA-MS analysis. PQ500 SIS-spiked DIA data from all serum and 638 

plasma samples of the GSTT COVID-19 ICU cohort, the KCH COVID-19 ICU cohort, the 639 

non-COVID-19 sepsis ICU cohort and the control patients before elective cardiac surgery were 640 
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analyzed in Spectronaut v14 (Biognosys AG), using the provided PQ500 analysis plug-in. MS1 641 

and MS2 mass tolerance strategies were set to relative at a tolerance of 20 ppm, while MS2 642 

mass tolerance was set to dynamic. Retention time calibration was achieved using the spiked 643 

iRT peptides included in the PQ500 SIS mix. Precursor and protein Q-value cutoff was set to 644 

0.01. Quantification was conducted at an MS2 level using peak areas and individual runs were 645 

normalized using the global strategy set to median. All peptides for reported proteins were 646 

manually checked to ensure accurate peak integration across all samples. Peptides with a Q-647 

value of more than 0.01 or a signal to noise ratio of less than 5 were marked as missing. Peptides 648 

with more than 30% missing values across all samples were filtered out and the remaining 649 

missing values were imputed using the KNN algorithm (K = 5)74. Spearman correlations of 650 

peptides belonging to the same protein were computed. In case more than two peptides per 651 

protein were detected, peptides were filtered if their correlation with the remaining peptides 652 

was less than r = 0.4. In case two peptides per protein were detected, the most abundant peptide 653 

was kept even when correlation was less than r = 0.4. Final protein abundance was calculated 654 

by summing up the quantified peptide abundances. Final quantitative comparisons were 655 

conducted using the light/heavy peptide abundance ratio. For validation of our DIA-MS data, 656 

we correlated levels to clinical measurements of albumin (n = 49, r = 0.68, P <0.05) and C-657 

reactive protein (n = 49, r = 0.83, P <0.05) as examples of high and medium-abundant proteins. 658 

 659 

SARS-CoV-2 spike protein pull-down. His-tagged recombinant SARS-CoV-2 spike 660 

glycoprotein (RP-87680, ThermoFisher) was added to 1:2 PBS-diluted plasma from COVID-661 

19 ICU patients (n = 8) or non-COVID-19 controls (n = 3) at 200 ng/µL and incubated 662 

overnight at 4°C with intermittent mixing. His-tagged spike was then isolated by means of 663 

metal affinity magnetic beads (Dynabeads His-Tag Isolation and Pull-down, 10103D, 664 

ThermoFisher) and eluted in imidazole-containing phosphate buffer. Proteins in the pull-down 665 
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isolates were denatured, reduced, alkylated and precipitated, as described above. Proteins 666 

interacting non-specifically with the solid phase were determined by incubating plasma 667 

samples with magnetic beads without the addition of His-tagged spike. Pull-down of His-668 

tagged spike without addition of plasma was performed as an additional control. Spike pull-669 

down protein digestion followed the same protocol outlined above.  670 

 671 

Data-dependent acquisition (DDA)-MS analysis. Proteins from the spike pull-down 672 

experiments were subject to in-solution tryptic digestion and C18 cleanup as described above. 673 

Tryptic peptides were analyzed by LC-MS/MS. An UltiMate 3000 HPLC system (Thermo 674 

Scientific) with a nanoflow selector was coupled via an EASY-Spray Source (Thermo 675 

Scientific) to a Q Exactive HF mass spectrometer (Thermo Scientific). Peptides were injected 676 

onto a C18 trap cartridge (Thermo Scientific, 160454) at a flow rate of 25 µL / min for 1 min, 677 

using 0.1% FA (aq). Peptides were eluted from the trap cartridge and separated on an analytical 678 

column (EASY-Spray C18 column, 75 µm x 50 cm, Thermo Scientific, ES803A, at 45 °C) at 679 

a flow rate of 0.25 µL / min using the following gradient: 0–1 min, 1% B; 1–6 min, 1–6% B; 680 

6−40 min, 6−18% B; 40–70 min, 18–35% B; 70–80 min, 35–45% B; 80–81 min, 45–99% B; 681 

81–89.8 min, 99% B; 89.8–90 min, 99–1% B; 90–120 min, 1% B. Mobile phase A was 0.1% 682 

FA (aq) and mobile phase B was 80% ACN, 0.1% FA (aq). Precursor MS1 spectra were 683 

acquired using Orbitrap detection (resolution 60000 at 200 m/z, scan range 350–1600). Data-684 

dependent MS2 spectra of the most abundant precursor ions were obtained after higher-energy 685 

C-trap dissociation and Orbitrap detection (resolution 15000 at 200 m/z) with TopN mode 686 

(loop count 15) and dynamic exclusion (duration 40 s) enabled. 687 

 688 

MS database search for DDA-MS analysis. Proteome Discoverer software (version 689 

2.3.0.523, Thermo Scientific) was used to search raw SARS-CoV-2 spike glycoprotein pull-690 
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down data files against a human database (UniProtKB/Swiss-Prot version 2020 01, 20,365 691 

protein entries) supplemented with SARS-CoV-2 spike glycoprotein (1 protein entry) using 692 

Mascot (version 2.6.0, Matrix Science). The mass tolerance was set at 10 ppm for precursor 693 

ions and 0.02 Da for fragment ions. Trypsin was used as the digestion enzyme with up to two 694 

missed cleavages being allowed. Carbamidomethylation of cysteines and oxidation of 695 

methionine residues were chosen as fixed and variable modifications, respectively. 696 

 697 

Machine learning. In addition to statistical techniques, machine learning was deployed to 698 

identify a prognostic classifier for COVID-19 ICU patients based on 27 clinical variables, 699 

RNAemia and three ELISA measurements. The RNAemia feature was defined as a binary 700 

feature which takes a true value when RNAemia was present within six days upon admission 701 

to ICU. Statistical significance with P value <0.05 was used as selection criterium for singleton 702 

markers. The shortlisted singleton markers were subsequently compared in binary and triplet 703 

combinations with all 27 clinical variables, RNAemia and the three ELISA measurements of 704 

PTX3, RAGE and LGALS3BP. In this setup, binary and triplet combinatorial feature search 705 

was performed using wrapper feature selection75 with support vector machine (SVM) classifier 706 

using radial basis function (RBF) kernel. Feature combinations were evaluated using the 707 

average of sensitivity, positive predicted value (PPV) and area under the receiver operating 708 

characteristic curve (ROC AUC) metrics. Given the imbalanced data with positive class i.e. 709 

non-survivors as the minority class, PPV along with sensitivity helps to balance false positives 710 

and false negatives. Combined with ROC AUC, it further facilitates equilibrium between 711 

sensitivity and specificity with high prediction probability. SVM uses hyperplane (decision 712 

surface) leveraging only a percentage of training samples (support vectors), thus offering high 713 

generalization ability attributed to its near impervious characteristic to new samples76. 714 

Combinations were restricted to a maximum of triplets to enhance ease of clinical 715 
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implementation and avoid the risk of overfitting. Additionally, 10-fold cross validation along 716 

with leave-one-out validation was used to avoid overfitting and test model generalization. The 717 

SVM Synthetic Minority Oversampling Technique (SMOTE) was used to prevent learning bias 718 

of SVM RBF towards the majority class77. Tuning of SVM RBF external parameter i.e. C was 719 

performed using grid search. The Scikit-learn default i.e. ‘scale’ was used for the SVM RBF 720 

gamma parameter78. A permutation test was performed to evaluate the null hypothesis that the 721 

classifier performance is by chance i.e. input variables and outcome labels are independent79. 722 

Hence, rejection of the null hypothesis implies that the classifier has found a real class structure 723 

(pattern) in the data. For technical validation of our ‘Age, RNAemia’ model based on SVM 724 

RBF, we employed a permutation test for statistical significance of the classifier performance; 725 

and stability of feature importance in an alternate machine learning feature ranking model i.e. 726 

Random forest with resampling. Age and RNAemia were ranked among the top five most 727 

important features based on mean importance across 100 resampling cycles of sensitivity 728 

analysis. A permutation test with 50 permutes i.e. repeating the classification procedure after 729 

random permuting of the outcome labels returned a significant P value (Supplementary Fig. 730 

8). The implementation of machine learning was done using Scikit-learn 0.23.2 python 731 

package78.  732 

 733 

Statistical analysis. Mann-Whitney U significance test was used for continuous variables and 734 

Fisher exact test for binary variables. Spike pull-down data was analyzed by paired or unpaired 735 

Student’s t-tests as appropriate. Statistical comparisons on MS data were performed using the 736 

Ebayes algorithm of the limma package correcting for age and sex. Timepoint comparisons 737 

were performed using the non-parametric Kruskal Wallis test. Correlation patterns between 738 

continuous variables were analyzed using Spearman correlation. Correlation between 739 

categorical and continuous variables was examined using point-biserial correlation80. Anti-740 



 28 

SARS-CoV-2 antibody data and trajectories of protein clusters were fitted using Generalized 741 

Alternative Models (GAM), with P values reporting the effect of RNAemia or mortality in the 742 

model. Survival analysis was performed using Cox regression and Kaplan-Meier plots 743 

leveraging the R ‘survival’ package. All features were scaled to a mean of zero and a standard 744 

deviation of one. Features with missing values ≥30% were dropped and not used for data 745 

analysis. This resulted in two clinical variables being dropped, i.e. eosinophils and basophils. 746 

The remaining features were imputed, as applicable, using K nearest neighbors (KNN) based 747 

imputation with K = 5 (Supplementary Table 11)74. To validate DIA-MS findings a publicly 748 

available proximity-extension assay proteomics-based dataset was analyzed (Data provided by 749 

the MGH Emergency Department COVID-19 Cohort (Filbin, Goldberg, Hacohen) with Olink 750 

Proteomics). Differential expression analysis of proteins in survivors and non-survivors 28-751 

days after hospitalization within the Olink dataset was achieved through the Ebayes method of 752 

the limma package. Statistical analysis and associated Figures were generated with R 753 

programming environment (version 4.02), Python programming environment (version 3.8.6) 754 

and GraphPad software (version 8.4.3). Schematic diagrams were created with Biorender.com.  755 
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 793 

Fig. 1. Schematic of study design. Plasma and serum samples were obtained from multiple patient 794 

cohorts across two UK-based university hospitals, including 123 COVID-19 patients: 78 SARS-CoV-2 795 

positive patients in ICU were sampled at multiple time points over a 2-week period and compared to 796 

hospitalized non-ICU SARS-CoV-2 positive patients (n = 45). We used non-COVID-19 ICU patients 797 

(n = 25) and patients before and after undergoing elective cardiac surgery (n = 30) as controls. Patient 798 

samples were assessed for SARS-CoV-2 RNAemia, antibody responses and protein changes in the 799 

circulation. Finally, plasma protein interactions with SARS-CoV-2 spike glycoprotein were determined 800 

using a pull-down assay followed by mass spectrometry analysis. 801 
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Fig. 2. SARS-CoV-2 RNAemia and the humoral immune response. a, Unadjusted hazard ratios 804 

based on two ICU patient cohorts (KCH and GSTT, 60 survivors and 18 non-survivors). Green indicates 805 

P value <0.05, maroon indicates P value <0.001 and blue indicates P value >0.05. b, Hazard ratios after 806 

adjustment for age and sex. c, Association of SARS-CoV-2 RNAemia with binary variables (Spearman 807 

correlation) and continuous variables (point-biserial correlation). Red indicates positive and blue 808 

negative correlation with P value <0.05. Abbreviations: Alb: albumin, ALP: alkaline phosphatase, ALT: 809 

alanine aminotransferase, Bil: bilirubin, COPD: Chronic obstructive pulmonary disease, Crea: 810 

Creatinine, CRP: C-reactive protein, DM: Diabetes, Hct: Hematocrit, Hb: Hemoglobin, HR: Heart rate, 811 

HTN: Hypertension, Lymphoc: Lymphocytes, MAP: Mean arterial pressure, Monoc: Monocytes, 812 

Neutroph: Neutrophils, K+: Potassium, Resp. rate: Respiratory rate, Na+: Sodium, Temp: Body 813 

temperature, WCC: White cell count. d, Anti-SARS-CoV-2 spike IgG and (d) anti-SARS-CoV-2 814 

neutralization response (d) based on days post onset of symptoms (POS) in patients who tested positive 815 

(red) or negative (blue) for plasma/serum SARS-CoV-2 RNA within the first six ICU days. Lines show 816 

fitted Generalized Additive Models (GAM) with grey bands indicating the 95% interval of trust, 817 

correcting for age and sex. e, Anti-SARS-CoV-2 spike IgG levels (e) and anti-SARS-CoV-2 818 

neutralization capacity (e) in individual samples positive or negative for SARS-CoV-2 RNA. 819 

Significance was determined through the Mann-Whitney U test. P values are corrected for age, sex and 820 

days POS. 821 
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Fig. 3. COVID-19 circulating proteome signature and associations with 28-day mortality. a, 824 

Plasma proteome profiling was conducted using a data-independent acquisition-mass spectrometry 825 

(DIA-MS) approach with spiked standards for 500 proteins. Hierarchical cluster analysis was conducted 826 

upon significantly changing plasma proteins across control patients before elective cardiac surgery (n = 827 

30), ICU patients with sepsis (n = 12) and ICU patients with COVID-19 (n = 12, KCH). The heatmap 828 

highlights 47 proteins enriched in COVID-19. Kruskal-Wallis, BH correction q<0.05. b, Gene ontology 829 

enrichment analysis was conducted upon these 47 proteins and significantly enriched pathways are 830 

represented. c, 29 common proteins cross-referenced against two published proteomic studies, exploring 831 

protein biomarkers of COVID-19 severity. The ability of these 29 proteins to predict 28-day mortality 832 

was explored in an independent ICU patient cohort (GSTT) by DIA-MS, and hazard ratio plots are 833 

shown. d, Proteomic analysis by DIA-MS conducted upon the serum samples of the GSTT COVID-19 834 

ICU cohort returned additional biomarker candidates that predict 28-day mortality. Significance was 835 

determined through the Kruskal-Wallis test with Benjamini and Hochberg’s FDR correction. 836 
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Fig. 4. Circulating protein changes associated with SARS-CoV-2 RNAemia status over time. a, 839 

DIA-MS analysis upon serum samples from the GSTT COVID-19 ICU cohort was used to determine 840 

proteins that associate with the presence of SARS-CoV-2 RNAemia. Proteins that were significantly 841 

associated with RNAemia at baseline are individually represented as violin plots. Significance was 842 

determined through the Limma linear model analysis using Benjamini and Hochberg’s FDR correction.  843 

Abbreviations: CDH5, cadherin-5 or VE-cadherin; CFHR1, complement factor H-related protein 1; 844 

SERPING1, plasma protease C1 inhibitor; CTSD, cathepsin D; CETP, cholesteryl ester transfer protein; 845 

F5, coagulation factor 5; C4A, complement factor 4a; PRSS3, trypsin-3; CD5a, CD5 antigen-like. b, 846 

Proteins with significantly different trajectories over time (baseline, week 1 – time point 1, week 2 – 847 

time point 2) between RNAemia positive and negative patients. PIGR, polymeric immunoglobulin 848 

receptor; KLKB1, kallikrein B1. c, Serial serum samples from COVID-19 ICU patients (GSTT, 849 

baseline, week 1 and week 2) were analyzed by DIA-MS to determine protein changes over time in 850 

ICU. The heat map represents a hierarchical cluster analysis conducted upon a Spearman correlation 851 

network of significantly changing proteins over time in ICU. Comparison of the trajectories of protein 852 

clusters in COVID-19 ICU patients based on 28-day mortality. Gene ontology enrichment analysis was 853 

used to determine functional pathways associated with the distinct protein clusters identified. Listed are 854 

the protein clusters that show a significant change between 28-day survivors (grey) and non-survivors 855 

(red) - and having a significant interaction with time points (baseline, week 1 – time point 1, week 2 – 856 

time point 2). Lines show fitted Generalized Additive Models (GAM) with grey bands indicating the 857 

95% interval of trust. P values represent the significance of the outcome term in a fitted GAM model 858 

when correcting for age and sex.  859 
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 861 

Fig. 5. LGALS3BP interacts with SARS-CoV-2 spike glycoprotein. a, Magnetic bead-based affinity 862 

isolation of binding partners using His-tagged SARS-CoV-2 spike glycoprotein as a bait for proteins in 863 

SARS-CoV-2-positive patient plasma. b, Volcano plot with significantly enriched proteins. c, 864 

Comparison of SARS-CoV-2 spike glycoprotein pull-down using plasma from COVID-19 ICU patients 865 

and non-COVID-19 sepsis ICU patients. Significance was determined by Student’s t-test. d, 866 

LGALS3BP levels across three patient cohorts as determined by DIA-MS or ELISA: control patients 867 

before undergoing elective cardiac surgery (n = 30), pre-pandemic sepsis ICU patients (n = 12) and 868 

COVID-19 ICU patients (n = 74). Kruskal-Wallis and Dunn’s multiple comparisons test were used to 869 

determine statistical significance. e, Volcano plot representing protein changes between baseline plasma 870 

samples from patients in ICU with either sepsis or COVID-19. Significance was determined through 871 

the Mann-Whitney U test with Benjamini and Hochberg’s FDR correction. f, Plasma proteins 872 

correlating to LGALS3BP after age and sex corrections are highlighted by a Spearman correlation 873 

matrix across the proteomic dataset. Proteins with a Spearman correlation coefficient greater than 0.5 874 

were used for Gene ontology pathway enrichment analysis (Supplementary Fig. 5). 875 
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 876 

Fig. 6. SARS-CoV-2 mortality prediction using machine learning. a, Kaplan-Meier plot for 877 

age (using median age of 54 years). b, Kaplan-Meier plot for SARS-COV-2 RNAemia. As a single 878 

predictor, RNAemia provides the best stratification for survival. c, Kaplan-Meier plot for PTX3 using 879 

median of serum or plasma. d, e, f, Kaplan-Meier plots for ‘RNAemia, PTX3’, ‘Age, RNAemia’ and 880 

‘Age, PTX3’ combined in SVM RBF machine learning model. The machine learning model selected 881 

binary combinations of ‘Age, RNAemia’ and ‘Age, PTX3’ as the best predictors.   882 
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